

Kevin Delin (Kevin.A.Delin@jpl.nasa.gov,818-354-9647) Shannon Jackson

PARTICIPANTS

Technology:

Kevin Delin Shannon Jackson

Science:

Ken Nealson Gene McDonald Michael Storrie-Lombardi Sasha Tsapin Yuk Yung Lisa Stein

THE SENSOR WEB INSTRUMENT

A Sensor Web is a set of distributed transducers that cooperate to form a large macroinstrument capable of autonomous operation for *in situ* and remote sensing and environmental exploration. The interaction between nodes gives the macroinstrument an intelligence to react to its environment.

SENSOR WEB INSTRUMENT

SENSOR WEB FEATURES

- Flexible Concept (land/aqueous/atmosphere/space)
- Low Power/Lightweight
- Cheap/Economy of Scale
- Fault Tolerant / Built-in Redundancy
- Macroscopic Web Intelligence
- Scalable
- Long Life
- Simple Deployment

KA Delin 4/28/99

WHY MULTI-HOPPING IS EFFICIENT

FRIIS TRANSMISSION EQUATION: $P_{transmit} \propto r^m P_{receive}$ (2 ≤ m \lesssim 4)

$$\longrightarrow$$
 $P_{transmit}$ $\propto \frac{1}{N^{(m-1)}} D^m P_{receive}$

SENSOR WEB DEVELOPMENT APPROACH

- Focus on field-specific applications to gain experience with sensor web design and use (guerrilla instrument development)
- Focus on field tests that will yield specific scientific results
- Leverage emerging technologies to increase sensor web performance
- Develop appropriate packaging
- Develop deployment mechanisms

EXTREMOPHILE ENVIRONMENTS

LOCATION	CONDITIONS	MINIMUM DISTANCE FROM JPL (miles)
MONO LAKE	WET, ALKALINE	300
HOT SPRINGS (EASTERN SIERRA)	WET, HOT, ACID	300
DEATH VALLEY	DRY, HOT	300
BAJA ALGAL MATS	WET, HOT, AEROBIC/ANAEROBIC	400
HYDROTHERMAL VENTS (PACIFIC RIM)	WET, HOT/COLD, ACID/ALKALINE	1500 – 5000
HONEYMOON LAKE	WET, COLD	2000
ANTARCTIC DESERT	DRY, COLD	8000
LAKE VOSTOK	WET, COLD	8500
MARS PERMAFROST	DRY, COLD	40,000,000
EUROPA	WET, COLD, HOT(?)	400,000,000 KA Delin 4/28/99

MONO LAKE, CALIFORNIA

\$50 WORTH OF COMMERCIAL PARTS

SENSOR WEB POD PROTOTYPE

SENSOR WEB PERFORMANCE DEMONSTRATED AT JPL

JPL

DATA HOPPING: LINEAR FORMATION

- Each node in contact with only its nearest neighbor
- Triple hop demonstrated

DATA HOPPING: DIAMOND FORMATION

- Multiple hopping paths to prime node
- Multiple paths demonstrates fault tolerance of sensor web
- Redundant data eliminated dynamically

SENSOR WEB STATUS

Today:

- RF communication
- Error detection
- Simple data hopping
- Basic power management
- Basic sensors
- Breadboard components

Tomorrow:

- Error correction
- · Handshaking data hopping
- Pod location/Web self-organization
- Field-qualified pods (moisture, radiation, etc.)
- Local energy harvesting
- Tighter internal node integration (system on a chip)
- Macroscopic data management (power consumption, sensor awareness, etc.)
- Field data for science community

THE INTERWEB A GLOBAL VIRTUAL PRESENCE

